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Overview

• Intro

• Markov Decision Processes

• Reinforcement Learning

– Sarsa

– Q-learning

• Exploration vs Exploitation tradeoff
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Resources

• Book: Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto

• UCL Course on Reinforcement Learning
David Silver
– https://www.youtube.com/watch?v=2pWv7GOvuf0

– https://www.youtube.com/watch?v=lfHX2hHRMVQ

– https://www.youtube.com/watch?v=Nd1-UUMVfz4

– https://www.youtube.com/watch?v=PnHCvfgC_ZA

– https://www.youtube.com/watch?v=0g4j2k_Ggc4

– https://www.youtube.com/watch?v=UoPei5o4fps
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http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=Nd1-UUMVfz4
https://www.youtube.com/watch?v=PnHCvfgC_ZA
https://www.youtube.com/watch?v=0g4j2k_Ggc4
https://www.youtube.com/watch?v=UoPei5o4fps


Lecture 1: Introduction to Reinforcement Learning

About RLBranches of Machine Learning

Reinforcement  
Learning

Supervised  
Learning

Unsupervised  
Learning

Machine  
Learning
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Why is it different

• No target values to predict

• Feedback in the form of rewards

– May be delayed not instantaneous

• Have a goal : max reward

• Have timeline : actions along arrow of time

• Actions affect what data it will receive
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Agent-Environment
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

Environments
Agent and Environment

observation

reward

action

At

Rt

Ot
At each step t the agent:  

Executes action At  

Receives observation Ot  

Receives scalar rewardRt

The environment:

Receives action At

Emits observationOt+1

Emits scalar reward Rt+1

t increments at env. step
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Sequential Decision Making

• Actions have long term 
consequences

• Goal maximize cumulative 
(long term) reward

– Rewards may be delayed

– May need to sacrifice short 
term reward

• Devise a plan to maximize 
cumulative reward
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

Reward
Sequential Decision Making

Examples:
A financial investment (may take months to mature)  

Refuelling a helicopter (might prevent a crash in several hours)  

Blocking opponent moves (might help winning chances many  

moves from now)
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Reinforcement Learning

10

Learn a behavior strategy (policy) that maximizes the long term 

Sum of rewards in an unknown and stochastic environment (Emma Brunskill: )

Planning under Uncertainty 

Learn a behavior strategy (policy) that maximizes the long term 

Sum of rewards in a known stochastic environment (Emma Brunskill: )
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Lecture 1: Introduction to Reinforcement Learning

Problems within RLAtari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot

Rules of the game are  

unknown

Learn directly from  

interactive game-play

Pick actions on  

joystick, see pixels  

and scores
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Demos

Some videos

• https://www.youtube.com/watch?v=V1eYniJ0Rnk

• https://www.youtube.com/watch?v=CIF2SBVY-J0

• https://www.youtube.com/watch?v=I2WFvGl4y8c

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=I2WFvGl4y8c
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Markov Property
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State Transition



16

Markov Process
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Student Markov Chain
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Student MC : Episodes
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Student MC : Transition Matrix
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Return
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Value
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Student MRP
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Student MRP : Returns
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Student MRP : Value Function
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Student MRP : Value Function



26

Student MRP : Value Function
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Bellman Equation for MRP
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Backup Diagrams for MRP
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Bellman Eq: Student MRP
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Bellman Eq: Student MRP



Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Bellman Equation
Solving the Bellman Equation

The Bellman equation is a linear equation  

It can be solved directly:

v = R + γPv

(I − γP) v = R

v = (I − γP)−1 R

Computational complexity is O(n3) for n states  

Direct solution only possible for small MRPs

There are many iterative methods for large MRPs, e.g.
Dynamic programming  
Monte-Carlo evaluation  
Temporal-Difference learning 31
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Markov Decision Process
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Student MDP
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Policies
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MP → MRP → MDP
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Value Function
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Bellman Eq for MDP

Evaluating Bellman equation translates into 1-step lookahead
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Bellman Eq, V
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Bellman Eq, q
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Bellman Eq, V
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Bellman Eq, q
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Student MDP : Bellman Eq
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Bellman Eq : Matrix Form
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Optimal Value Function
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Student MDP : Optimal V
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Student MDP : Optimal Q



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Optimal Policy

Define a partial ordering over policies

π ≥ π' if vπ(s) ≥ vπ'(s),∀s

Theorem

For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal  

to all other policies, π∗ ≥ π, ∀π

All optimal policies achieve the optimal value function,  

vπ∗ (s) = v∗(s)

All optimal policies achieve the optimal action-value function,  

qπ∗(s,a) = q∗(s,a)
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

There is always a deterministic optimal policy for any MDP  

If we know q∗(s, a), we immediately have the optimal policy
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Student MDP : Optimal Policy
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Bellman Optimality Eq, V
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Student MDP : Bellman Optimality



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Optimality Equation
Solving the Bellman Optimality Equation

Bellman Optimality Equation is non-linear  

No closed form solution (in general) 

Many iterative solution methods

Value Iteration  
Policy Iteration  
Q-learning  
Sarsa
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example

Start

Goal

Rewards: -1 per time-step  

Actions: N, E, S, W  

States: Agent’s location

53



Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Policy

Start

Goal

Arrows represent policy π(s) for each state s 54



Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value vπ (s) of each state s 55



Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Model

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1

-1

-1 -1

-1 -1

Start

Goal

Agent may have an internal  

model of the environment

Dynamics: how actions  

change the state

Rewards: how muchreward

from each state

The model may be imperfect

Grid layout represents transition model Pa  
ss‘

a
sNumbers represent immediate reward R from each state s

(same for all a)
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Algorithms for MDPs
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentModel
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Algorithms cont.
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Prediction Control



Lecture 1: Introduction to Reinforcement Learning

Problems within RLLearning and Planning

Two fundamental problems in sequential decision making  

Reinforcement Learning:

The environment is initiallyunknown

The agent interacts with the environment  

The agent improves itspolicy

Planning:

A model of the environment is known

The agent performs computations with its model (without any  

external interaction)

The agent improves its policy

a.k.a. deliberation, reasoning, introspection, pondering,  

thought, search
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMajor Components of an RL Agent

An RL agent may include one or more of these components:

Policy: agent’s behaviourfunction

Value function: how good is each state and/or action  

Model: agent’s representation of the environment
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Dynamic Programming
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Requirements for DP
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Applications for DPs

64



Lecture 3: Planning by Dynamic Programming

IntroductionPlanning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP  

It is used for planning in an MDP

For prediction:
Input: MDP (S, A , P , R , γ) and policy π

or: MRP (S, Pπ , Rπ , γ)
Output: value function vπ

Or for control:
Input: MDP (S, A , P , R , γ)
Output: optimal value function v∗

and: optimal policy π∗
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Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation
Policy Evaluation (Prediction)

Problem: evaluate a given policy π

Solution: iterative application of Bellman expectation backup

v1 →  v2 →  ... → vπ

Using synchronous backups,  
At each iteration k + 1  

For all states s ∈ S

Update vk+1(s) from vk (s')  
where s' is a successor state of s

We will discuss asynchronous backups later

Convergence to vπ can be proven
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Iterative policy Evaluation
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Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Example: Small Gridworld
Evaluating a Random Policy in the Small Gridworld

Undiscounted episodic MDP (γ = 1)  

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)  

Actions leading out of the grid leave state unchanged  

Reward is −1 until the terminal state is reached  

Agent follows uniform random policy

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25
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Policy Evaluation : Grid World
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Policy Evaluation : Grid World
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Policy Evaluation : Grid World
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Policy Evaluation : Grid World
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Most of the story in a nutshell:



Finding Best Policy
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Lecture 3: Planning by Dynamic Programming

Policy IterationPolicy Improvement

Given a policy π

Evaluate the policy π

vπ(s) = E [Rt+1 + γRt+2 + ...|St = s]

Improve the policy by acting greedily with respect to vπ

π' = greedy(vπ)

In Small Gridworld improved policy was optimal, π' = π∗

In general, need more iterations of improvement /  evaluation  

But this process of policy iteration always converges to π∗
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Policy Iteration
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Lecture 3: Planning by Dynamic Programming

Policy IterationPolicy Iteration

Policy evaluation Estimate vπ

Iterative policy evaluation

Policy improvement Generate πI ≥ π

Greedy policy improvement
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Jack’s Car Rental
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Policy Iteration in Car Rental
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Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement
Policy Improvement
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Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement
Policy Improvement (2)

If improvements stop,

qπ(s, π'(s)) = max qπ(s, a) = qπ(s, π(s)) = vπ(s)
a∈A

Then the Bellman optimality equation has been satisfied

vπ(s) = max qπ(s, a)
a∈A

Therefore vπ (s) = v∗(s) for all s ∈ S

so π is an optimal policy
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Lecture 3: Planning by Dynamic Programming

Contraction MappingSome Technical Questions

How do we know that value iteration converges to v∗?  

Or that iterative policy evaluation converges to vπ ?

And therefore that policy iteration converges to v∗?  

Is the solution unique?

How fast do these algorithms converge?

These questions are resolved by contraction mapping theorem
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Lecture 3: Planning by Dynamic Programming

Contraction MappingValue Function Space

Consider the vector space V over value functions  

There are |S| dimensions

Each point in this space fully specifies a value function v (s)  

What does a Bellman backup do to points in this space?

We will show that it brings value functions closer

And therefore the backups must converge on a unique solution
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Lecture 3: Planning by Dynamic Programming

Contraction MappingValue Function ∞-Norm

s∈S

We will measure distance between state-value functions u and

v by the ∞-norm

i.e.  the largest difference between state values,

||u − v||∞ = max |u(s) − v(s)|
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Lecture 3: Planning by Dynamic Programming

Contraction MappingBellman Expectation Backup is a Contraction

86



Lecture 3: Planning by Dynamic Programming

Contraction MappingContraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an  

operator T (v ), where T is a γ-contraction,

T converges to a unique fixed point  

At a linear convergence rate of γ
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Lecture 3: Planning by Dynamic Programming

Contraction MappingConvergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator T π has a unique fixed point  

vπ is a fixed point of T π (by Bellman expectation equation)  

By contraction mapping theorem

Iterative policy evaluation converges on vπ

Policy iteration converges on v∗
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Lecture 3: Planning by Dynamic Programming

Contraction MappingBellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T ∗,

T ∗(v) = max Ra + γPav
a∈A

This operator is a γ-contraction, i.e. it makes value functions  

closer by at least γ (similar to previous proof)

||T∗(u) − T ∗(v)||∞ ≤ γ||u − v||∞
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Lecture 3: Planning by Dynamic Programming

Contraction MappingConvergence of Value Iteration

The Bellman optimality operator T ∗ has a unique fixed point  

v∗ is a fixed point of T ∗ (by Bellman optimality equation)  By 

contraction mapping theorem

Value iteration converges on v∗
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Most of the story in a nutshell:
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Most of the story in a nutshell:
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Most of the story in a nutshell:



Lecture 3: Planning by Dynamic Programming

Policy Iteration

Extensions to Policy Iteration
Modified Policy Iteration

Does policy evaluation need to converge to vπ ?

Or should we introduce a stopping condition
e.g. E-convergence of value function

Or simply stop after k iterations of iterative policy evaluation?

For example, in the small gridworld k = 3 was sufficient to  

achieve optimal policy

Why not update policy every iteration? i.e. stop after k = 1

This is equivalent to value iteration (next section)
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Lecture 3: Planning by Dynamic Programming

Policy Iteration

Extensions to Policy Iteration
Generalised Policy Iteration

Policy evaluation Estimate vπ

Any policy evaluation algorithm

Policy improvement Generate π' ≥ π

Any policy improvement algorithm
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Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs
Value Iteration

Problem: find optimal policy π

Solution: iterative application of Bellman optimality backup

v1 →  v2 →  ... → v∗

Using synchronous backups  
At each iteration k + 1  

For all states s ∈ S
Update vk+1(s) from vk (s')

Convergence to v∗ will be proven later

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy
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Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs
Value Iteration (2)
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Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
Asynchronous Dynamic Programming

DP methods described so far used synchronous backups

i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order  

For each selected state, apply the appropriate backup

Can significantly reduce computation

Guaranteed to converge if all states continue to be selected
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Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Asynchronous Dynamic ProgrammingAsynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

In-place dynamicprogramming

Prioritised sweeping

Real-time dynamicprogramming
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Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
In-Place Dynamic Programming
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Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
Prioritised Sweeping

102



Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent’s experience to guide the selection of states  

After each time-step St , At , Rt+1

Backup the state St
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Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Full-width and sample backups
Full-Width Backups

DP uses full-widthbackups

For each backup (sync or async)  
Every successor state and action is  

considered

Using knowledge of the MDP transitions  
and reward function

DP is effective for medium-sized problems  

(millions of states)

For large problems DP suffers Bellman’s
curse ofdimensionality

Number of states n = |S| grows  

exponentially with number of state  
variables

Even one backup can be too expensive 104



Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Full-width and sample backups
Sample Backups

In subsequent lectures we will consider sample backups

Using sample rewards and sample transitions
(S, A, R, S ')

Instead of reward function R  and transition dynamics P

Advantages:

Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling
Cost of backup is constant, independent of n = |S|
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Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming 

Approximate Dynamic Programming
Approximate Dynamic Programming
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Monte Carlo Learning
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Lecture 4: Model-Free Prediction

Monte-Carlo LearningMonte-Carlo Reinforcement Learning

MC methods learn directly from episodes of experience

MC is model-free: no knowledge of MDP transitions /  rewards  

MC learns from complete episodes: nobootstrapping

MC uses the simplest possible idea: value = mean return  

Caveat: can only apply MC to episodic MDPs

All episodes must terminate

MC methods can solve the RL problem by averaging sample returns

MC is incremental episode by episode but not step by step

Approach: adapting general policy iteration to sample returns

First policy evaluation, then policy improvement, then control
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Lecture 4: Model-Free Prediction

Monte-Carlo LearningMonte-Carlo Policy Evaluation

Goal: learn vπ from episodes of experience under policy π

S1,A1,R2,...,Sk ∼ π

Recall that the return is the total discounted reward:

Gt = Rt+1 + γRt+2 + ...+ γT−1RT

Recall that the value function is the expected return:

vπ (s) = Eπ [Gt | St = s]

Monte-Carlo policy evaluation uses empirical mean return  

instead of expected return, because we do not have the 
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Every Visit MC Policy Evaluation
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SARSA
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Q-Learning
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Q-Learning vs. Sarsa
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Monte Carlo Tree Search
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